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Abstract: We perform an exploratory lattice QCD simulation of DD̄ scattering, aimed

at determining the masses as well as the decay widths of charmonium resonances above

open charm threshold. The resulting phase shift for DD̄ scattering in p-wave yields the

well-known vector resonance ψ(3770). For mπ =156 MeV, the extracted resonance mass

and the decay width agree with experiment within large statistical uncertainty. The scalar

charmonium resonances present a puzzle, since only the ground state χc0(1P ) is well under-

stood, while there is no commonly accepted candidate for its first excitation. We simulate

DD̄ scattering in s-wave in order to shed light on this puzzle. The resulting phase shift

supports the existence of a yet-unobserved narrow resonance with a mass slightly below

4 GeV. A scenario with this narrow resonance and a pole at χc0(1P ) agrees with the

energy-dependence of our phase shift. The three scenarios with just one narrow resonance,

just one broad resonance, or one narrow and one broad resonance are not supported by

our lattice data. Further lattice QCD simulations and experimental efforts are needed to

resolve the puzzle of the excited scalar charmonia.
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1 Introduction

Charmonia c̄c well below open-charm threshold D̄D are among the best understood hadrons.

Their spectra and selected transition matrix elements are successfully described by lattice

QCD simulations and QCD motivated models. Recent lattice calculations have performed

the necessary extrapolations and considered spectra [1, 2] as well as certain radiative tran-

sitions [3, 4]. For states well-below open charm threshold, the main remaining uncertainty

is the neglect of charm-annihilation Wick contractions in lattice simulations.

The most interesting charmonium and charmonium-like states lie near or above open

charm thresholds. During the past decade a plethora of states that can likely not be inter-

preted as conventional c̄c have been discovered in experiment (for a review see for example

[5, 6]). These states have been treated theoretically making simplifying assumptions and

reliable quantitative results for those hadrons are not available. In particular, all of the

lattice simulations so far have ignored the strong decay of the charmonium resonances to

a pair charmed mesons c̄c → D̄(∗)D(∗), which typically represents the main decay mode.

Except in a few simulations [7–10], the effect of the threshold on the near-threshold states
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has been neglected. The most extensive spectrum of charmonia has been obtained in sim-

ulations with Nf = 2 + 1 dynamical flavors at mπ ≃ 400 MeV [11], but the determination

neglects the unstable nature of the states and relies on extracting the energy levels with

only quark-antiquark interpolating fields, which may lead to unphysical results close to

multi-hadron thresholds [12–14].

Here we present a lattice QCD simulation of the vector (JPC = 1−−) and scalar (0++)

charmonium resonances above D̄D threshold, taking into account their strong decay to D̄D

for the first time. The lowest vector resonance above open charm threshold, the ψ(3770) is

well established in experiment [15], and we extract its width by simulating D̄D scattering

in p-wave. In contrast to that, the experimental and theoretical status of scalar charmonia

is puzzling: the only well-established state is the ground state χc0(1P ), while there is

no commonly accepted candidate for its first excitation χc0(2P ). We present a study of

D̄D scattering in s-wave, aiming to address this open problem. We also consider possible

effects of the D̄D threshold on the vector ψ(2S) and scalar χc0 charmonia, which lie below

threshold.

2 Open questions for charmonia of interest

2.1 Vector charmonia

The ψ(3770) with M = 3773.15 ± 0.33 MeV and Γ = 27.2 ± 1.0 MeV is located only

≃ 45 MeV above D̄D threshold [15, 16]. We focus here on its dominant decay mode

ψ(3770) → D̄D in p-wave with branching fraction 0.93+8
−9 [15]. It is a well-established

experimental resonance and is generally accepted to be predominantly the conventional
2s+1nLJ =3 1D1 c̄c state [17–19]. There is an ongoing discrepancy between results from

BES-II [20] and Cleo [21] regarding the non-D̄D part of the branching fraction which may

be connected to neglecting interference effects in the BES-II analysis. Significant non-

D̄D decays into light hadrons can occur if there is non-negligible mixing with the ψ(2S)

[22]. For our analysis we neglect disconnected contributions that would cause decay into

light hadrons and treat the decay into D̄D as elastic, neglecting the decays into J/ψ ππ and

J/ψ η that have tiny branching fractions [15]. Our aim is to perform the first determination

of the ψ(3770) resonance mass and ψ(3770) → D̄D decay width using a lattice simulation

for D̄D scattering in p-wave.

We also investigate whether the D̄D threshold has any effect on ψ(2S), which is the

first radial excitation of J/ψ and is situated ≃ 42 MeV below threshold. Such a possibility

was discussed in relation to the Fermilab-MILC preliminary results [23] where a simple

analysis of the spin-averaged 2S state appeared high with respect to experiment, although

large systematic uncertainties related to excited state contaminations were observed. A

more recent HPQCD study [2] finds no significant discrepancy. The mixing of the vector

charmonia with a pair of two charmed mesons was first simulated in [7], where only D1D̄

in s-wave was considered and the width of ψ(3770) was not extracted.
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2.2 Scalar charmonia

The only well established scalar charmonium state is the ground state χc0(1P ), interpreted

as the 31P0 c̄c and located well below the open charm threshold. A further known resonance,

the X(3915) with Γ = 20±5 MeV is seen only in J/ψ ω and γγ decay channels [15]. BaBar

has determined its JP quantum numbers to be 0+ [24] which would only allow JPC = 0++.

This spin-parity determination by BaBar assumes that a JP = 2+ resonance would be

produced in the helicity 2 state, which might not be justified for an exotic meson [5]. As

a consequence, the PDG recently assigned X(3915) to be χc0(2P ) [15], but a number of

convincing reasons given by Guo & Meissner [25] and Olsen [26] raise serious doubts about

this assignment:

• The dominant decay mode of scalar charmonium above open charm threshold is

expected to be a ”fall-apart” mode into D̄D that would lead to a relatively broad

resonance. In particular the width into D̄D is expected to be much larger than for

the well-established χc2(2P ) [15], which decays to D̄D in d-wave. Yet mDD̄ invariant

mass spectra of several experiments show no evidence for X(3915) → DD̄. This also

indicates that the D̄D width extracted from the present lattice simulation cannot be

compared to X(3915).

• The spin-splitting mχc2(2P ) −mχc0(2P ) within this assignment seems too small com-

pared to mχb2(2P ) −mχb0(2P ) or mχc2(1P ) −mχc0(1P ).

• The partial width for the OZI suppressed X(3915) → ωJ/ψ seems too large [25],

which is translated to two contradicting limits for this decay in [26].

The intriguing χc0(2P ) was related to the broad structures in D̄D invariant mass in

the same references [25, 26]. The process γγ → D̄D from BaBar [27] and Belle [28] leads

Guo&Meissner to1

[25] : m = 3837.6 ± 11.5 MeV, Γ = 221± 19 MeV, (2.1)

while e+e− → J/ψDD̄ from Belle [29] leads Olsen to

[26] : m = 3878 ± 48 MeV , Γ = 347
+316

−143 MeV. (2.2)

Obviously the spectrum of scalar charmonia beyond the ground state presents an open

question. Our aim is to shed light on this issue by simulating D̄D scattering in s-wave on

the lattice, and look for possible resonances in the extracted scattering matrix. Preliminary

results based on the same simulation and only one ensemble have been presented in Ref.

[30].

3 Lattice setup and charm-quark treatment

The simulation is performed on two lattice ensembles with the parameters listed in Table

1. Both ensembles have rather low mπL but this is not a serious issue for charmonia and

1Here possible feed-down from γγ → D∗D̄ followed by D∗ → Dπ(γ) is ignored according to [29].

– 3 –



Ensemble (1) Ensemble (2)

N3
L ×NT 163 × 32 323 × 64

Nf 2 2+1

a [fm] 0.1239(13) 0.0907(13)

L [fm] 1.98(2) 2.90(4)

mπ [MeV] 266(3)(3) 156(7)(2)

Lmπ 2.68(3) 2.29(10)

κc (val) 0.12300 0.12686

#configs 279 196

Table 1. The gauge configurations of ensemble (1) are from [31, 32]. Those of ensemble (2) are

provided by the PACS-CS collaboration [33]. NL and NT denote the number of lattice points in

spatial and time directions, Nf the number of dynamical flavors and a the lattice spacing.

D̄D scattering in this simulation, where pions do not enter explicitly. Further details about

the ensembles and our implementation of charm quarks may be found in [12, 14, 31, 32]

for ensemble (1) and in [33, 34] for ensemble (2).

To minimize heavy-quark discretization effects at finite lattice spacing the Fermilab

method [35, 36] is used for the charm quarks. The corresponding dispersion relation [37]

for a meson M containing charm quarks is

EM (p) =M1 +
p2

2M2
− a3W4

6

∑

i

p4i −
(p2)2

8M3
4

+ . . . , (3.1)

where p = 2π
L q and q ∈ N3.

On both ensembles the charm quark hopping parameter κc is tuned [14, 34] using the

spin-averaged charmonium mass

m̄ ≡ 1

4
(mηc + 3mJ/ψ) , m̄exp = 3.06859(17) GeV (3.2)

which is the relevant reference mass for our spectra of charmonium. TheM1,2,4 for the spin-

averaged charmonium were determined based on the lattice data from the lattice dispersion

relation (3.1), setting W4 to zero. Then κc was fixed by tuning the kinetic mass M2 to

m̄exp. The corresponding values for the spin-averaged M1 are given in Table 2.

To investigate the D̄D scattering we need the dispersion relation ED(p) for D mesons,

which is also given by Eq. (3.1) with parameters M1,2,4 in Table 2. The common feature

of spectra in the scalar and vector charmonium channel are two-particle states D̄D that

have a discrete spectrum on the finite lattice. In the absence of interactions, D(q)D̄(−q)
have energies according to (3.1)

En.i.D(q)D̄(−q) = 2ED(q
2π
L ) , q ∈ N3 , (3.3)

which will be shifted due to the interaction.

Within the Fermilab approach, the rest masses have large discretization effects but

mass differences are expected to be close to physical [38, 38] and can be compared to
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meson mass Ensemble (1) Ensemble (2)

D aM1 ≡ amD 0.9792(11) 0.75317(83)

D aM2 1.107(14) 0.840(22)

D aM4 1.060(44) 0.95(15)

spin-aver. c̄c aM1 ≡ am̄ 1.52451(44) 1.20444(15)

D̄D vs. c̄c 2mD − m̄ 0.6910(36) 0.6568(36)

Table 2. The parameters in the dispersion relation (3.1) for D mesons and spin-averaged charmo-

nium 1
4 (mηc + 3mJ/ψ). The last line is in GeV, others in lattice units.

experiment. In order to compare the splitting Elat − m̄lat with Eexp − m̄exp, we will

sometimes plot

E = Elat − m̄lat + m̄exp (3.4)

and compare it with Eexp.

An important quantity is the position of the D̄D threshold with respect to our reference

mass. The splitting 2mD − m̄ for ensemble (2) is very close to the experimental value

2mexp
D − m̄exp ≃ 0.666 GeV, while it is a bit larger for ensemble (1) due to the heavier pion

mass and larger discretization effects (see Table 2).

Our charm quark treatment has been verified on ensemble (1) for low-lying charmonia,

D meson resonances [14] and Ds mesons [34, 39], where reasonable agreement with exper-

iment was found. The spectrum for Ds mesons and some other hadrons containing charm

quarks were also determined on ensemble (2) [34, 39] with even better agreement due to

the lower pion mass and smaller discretization effects.

4 Analysis details

Interpolating fieldsO are used to create and annihilate the physical system with JPC = 1−−

or 0++, isospin I = 0 and total momentum zero. All quark fields in the interpolators are

smeared according to the distillation method q ≡ ∑Nv
k=1 v

(k)v(k)†qpoint [40, 41]. We use

Nv = 192 eigenvectors of the lattice laplacian v(k) for ensemble (2) and Nv = 96 or 64

for ensemble (1). The distillation method is convenient for calculating a variety of Wick

contractions. The full distillation method [40] is employed on ensemble (1) with a smaller

volume and details of the implementation are given in [12, 14]. The stochastic version [41]

is used on ensemble (2) with larger volume and details of our implementation are provided

in [34].

4.1 Vector channel

D̄D in p-wave is the dominant two-meson contribution for E ≤ 4 GeV, while D1D̄ appears

higher. Sixteen c̄c and two D̄D interpolating fields are used in the relevant irreducible
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representation T−−
1 :

Oc̄c1−14 = c̄Aic , (4.1)

Oc̄c15 = Rijkc̄γ
jEkc , Ei ≡ Qijk

←−∇j
−→∇k ,

Oc̄c16 = Rijkc̄γtγ
jEkc ,

ODD1 = [c̄γ5u(ei) ūγ5c(−ei)
− c̄γ5u(−ei) ūγ5c(ei)] + {u→ d} ,

ODD2 = [c̄γ5γtu(ei) ūγ5γtc(−ei)
− c̄γ5γtu(−ei) ūγ5γtc(ei)] + {u→ d} ,

where i denotes polarization, while Qijk and Rijk = Rjik are listed in [42]. The c̄c inter-

polators Oc̄c1−14 for vector channel T−−
1 are listed in Table X of [14]. The momentum is

projected for each D meson separately,

ūΓc(k) ≡
∑

x

ei2πk·x/Lū(x, t)Γc(x, t) , (4.2)

so that the ODD couple to p-wave. For ensemble (1) Nv = 64 is used for ODD2 , and Nv = 96

for the remaining interpolators.

The irreducible representation T−−
1 contains JPC = 1−− states of interest, and also

ψ3 states with JPC = 3−− coupling due to the broken rotational symmetry on the lattice.

In the continuum limit, Oc̄c1−14 contain only 1−−, while Oc̄c15,16 contain 1−− and 3−− [42],

which will help us to identify the spin 3 admixture related to ψ3.

4.2 Scalar channel

D̄D in s-wave and J/ψ ω are the dominant two-meson states in the energy region of interest

E ≤ 4 GeV. Seven c̄c, four D̄D, and two J/ψ ω interpolating fields are used in the relevant

irreducible representation A++
1 :

Occ1−7 = c̄Ac , (4.3)

ODD1 = c̄γ5u(0) ūγ5c(0) + {u→ d} ,
ODD2 = c̄γ5γtu(0) ūγ5γtc(0) + {u→ d} ,
ODD3 =

∑

ek=±ex,y,z

c̄γ5u(ek) ūγ5c(−ek) + {u→ d} ,

ODD4 =
∑

|uk|2=2

c̄γ5u(uk) ūγ5c(−uk) + {u→ d} ,

O
J/ψ ω
1 =

∑

j

c̄γjc(0) [ūγju(0) + {u→ d}] ,

O
J/ψ ω
2 =

∑

j

c̄γjγtc(0) [ūγjγtu(0) + {u→ d}] .

Oc̄c1−7 are listed in Table X of [14]. The momenta are projected for each meson separately

in ODD and OJ/ψ ω. For ensemble (1) Nv = 64 is used for ODD2,3 , O
J/ψ ω
2 , and Nv = 96 for

the remaining interpolators.
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The irreducible representation A++
1 contains JPC = 0++ states of interest, and in

general also states with J ≥ 4, which appear at energies beyond our interest.

The interpolator ODD4 is not used for ensemble (1) since D(2)D(−2) appears above

4 GeV. The OJ/ψ ω are not used on ensemble (2) since the results from ensemble (1) indicate

that J/ψ ω is almost decoupled from the rest of the system.2

c̄c D̄D J/ψω

c̄c −1 +2 −2

D̄D +2 +2 −4 −2 +4

J/ψω
−2 −2 +4 +2 −4

Figure 1. Wick contractions computed for the correlation matrix (4.4) with interpolators (4.1,4.3).

We omit contractions where the charm quark annihilates. A red solid line represents a c quark,

while the black dashed line represents a u or d quark.

4.3 Towards the spectrum

The correlation matrix

Cjk(t) = 〈Ω|Oj(t′ + t)O†
k(t

′)|Ω〉
=

∑

n

Znj Z
n∗
k e−Ent (4.4)

contains the information on energies En and the overlaps Znj ≡ 〈Ω|Oj |n〉. We evaluate

all Wick contractions for O ≃ c̄c, (q̄c)(c̄q), (c̄c)(q̄q) (4.1,4.3) shown in Fig. 1. We omit

Wick contractions where charm quark annihilates as in almost all previous lattice simula-

tion of charmonia; these induce mixing with I = 0 decay channels containing only light

quarks u, d, s, they are Okubo-Zweig-Iizuka suppressed and present a challenge for current

lattice simulations. It is noteworthy that these decays might be important to clarify the

experiment puzzle with regard to non-D̄D hadronic decays [18, 22].

The energies and overlaps are extracted from the correlation matrix using the gener-

alized eigenvalue method [43–46]

C(t)u(n)(t) = λ(n)(t)C(t0)u
(n)(t) , (4.5)

2When the interpolators OJ/ψ ω are removed from the interpolator basis, the energies En and overlaps

〈Ok|n〉 for the remaining eigenstates n are practically unchanged for ensemble (1).
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where λ(n)(t) ∝ e−Ent at large t. Correlated two or one-exponential fits to λ(n)(t) are

used and t0 = 2, 3. The errors-bars correspond to statistical errors obtained using single-

elimination jack-knife.
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Figure 2. The energies E (see Eq. (3.4)) in the vector channel on both ensembles, together with the

experimental masses. The circles represent JPC = 1−− states, while the diamond represents a 3−−

admixture present in the irreducible representation T−−

1 and related to the ψ3. The dashed lines

show the non-interacting energy of D(1)D̄(−1) (3.3), and the dotted line represents the threshold

2mD. The D(0)D̄(0) state does not appear for p-wave. Interpolators used in (a,c) are given in

Table 3, while (b,d) utilize just Oc̄c from the same sets.

5 Results for the vector channel

5.1 Discrete spectrum

The energy levels in the vector channel are shown in Fig. 2a and 2c together with the

experimental masses. The full set of operators gave noisier signals than suitable subsets,

and the chosen subsets are listed in Table 3. The circles denote the energy levels that are

related to JPC = 1−− states J/ψ, ψ(2S), ψ(3770), D(1)D(−1) (from bottom to top),

while D(0)D̄(0) does not appear for p-wave. The diamond indicates a level related to the

JPC = 3−− state ψ3, that is present in representation T−−
1 due to the broken rotational

symmetry on the lattice.

The highest state (n = 5) has largest overlap with ODD and disappears when these

interpolators are excluded from the basis, as shown in Fig. 2b and 2d. Each energy level

in addition to D(1)D̄(−1) indicates the presence of a bound state or a resonance. Good

resemblance with the experimental spectrum is indeed confirmed in Fig. 2. The J/ψ is

significantly below threshold and no effect from threshold is expected. The ψ(2S) is situated
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n fit fit χ2

d.o.f.
Elata E [GeV] (ap)2 (ap)3 cot(δ) (ap)3 cot(δ)

√
s

δ[◦]

range type (3.4)

Ens. (1)

1 3-14 2ec 8.57/8 1.54153(43) 3.09572(34) / / / /

2 3-14 2ec 16.62/8 1.9045(38) 3.6738(58) −0.0588(47) 0.0137(18) 0.00717(95) −109.1(6.4)i

3 3-13 2ec 5.18/7 1.9801(46) 3.7941(71) 0.02413(57) −0.00599(34) −0.00303(17) 148.0(7.7)

4 3-13 2ec 5.09/7 2.0109(60) 3.8433(93) / / / /

5 3-13 2ec 8.49/7 2.1105(21) 4.0019(32) 0.1755(33) −0.144(23) −0.068(11) 153.0(4.4)

Ens. (2)

1 3-29 2ec 3.15/23 1.21683(16) 3.09557(18) / / / /

2 3-11 2ec 3.44/5 1.4862(60) 3.682(13) −0.0169(50) 0.0021(10) 0.00143(68) 120(25)i

3 3-11 2ec 4.36/5 1.531(11) 3.779(24) 0.0207(93) 0.00056(255) 0.00037(167) 79(40)

4 3-11 2ec 4.92/5 1.5611(78) 3.845(17) / / / /

5 3-11 2ec 4.78/5 1.5661(75) 3.856(16) 0.0509(65) −0.0054(76) −0.0034(49) 115(35)

Table 3. Discrete lattice spectrum from charmonium in the irreducible representation T−−

1 which

contains JPC = 1−−, 3−− and higher J states. The p and δ correspond to D̄D scattering in

p-wave. Subset Oc̄c1−6,8,9,11,12,15, O
DD
17,18 from the interpolators in Eq. (4.1) is used for ensemble (1)

and Oc̄c1,3−5,9−11,13,15, O
DD
17 for ensemble (2). t0 = 2 is used for all data points.
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Figure 3. The overlaps Znj = 〈Ω|Oj |n〉 for the vector channel show the matrix elements of inter-

polators Oj between the vacuum 〈Ω| and the physical eigenstate |n〉 on the lattice. We present the

overlap ratios Znj /maxmZ
m
j on ensemble (1) (top) and on ensemble (2) (bottom). The denominator

is the maximal |Zmj | at given operator number j. These ratios are independent on the normalization

of the interpolators Oj . Levels n = 1, .., 5 are ordered from lowest to highest En in Figs. 2a and 2c

for both ensembles, respectively. The order of interpolators j on the abscissa (listed in caption of

Fig. 3) is the same as in the list (4.1).

≃ 42 MeV below threshold in experiment, and the corresponding finite volume energy on

the lattice does not depend (within uncertainties) on whether D̄D interpolators are used or

not (see Fig. 2). The appearance of levels n = 3 and 4 is related to the ψ(3770) resonance

and to the spin 3 admixture and the corresponding ψ3 resonance. Level n = 4 is related

to ψ3 due to smaller overlaps 〈Oc̄c1−14|n = 4〉. This is based on the fact that Oc̄c1−14 couple
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ground st. Ensemble (1) Ensemble (2)

Elata 2.0124(38) 1.559(51)

Table 4. The energy of ψ3 with JPC = 3−− from the ground state in the A−−

2 irreducible

representation of the Oh point group.

in the continuum limit only to 1−− (which is responsible for small 〈Oc̄c1−14|ψ3〉 at finite

a), while Oc̄c15,16 couple to 1−− and 3−−. Further support is given by the near-degeneracy

with the energies from the irreducible representation A−−
2 where a 3−− state comes as the

ground state (see Table 4). For the ψ(3770) the avoided-level crossing scenario suggests E3

in the energy region m± Γ, which is reasonably satisfied by comparing to experiment. In

order to really determine the resonance mass and width for ψ(3770) one needs to consider

the phase shifts for D̄D scattering in p-wave.

5.2 D̄D scattering in p-wave

We assume that D̄D scattering in p-wave near the resonance ψ(3770) is elastic, which is a

good approximation since Br[ψ(3770) → DD̄] = 93 ± 9%, while the remaining part goes

mainly to J/ψππ. In the elastic case, the scattering phase shift δ is given by Lüscher’s

relation [47, 48]

p cot δ(p) =
2Z00(1; (

pL
2π )

2)

L
√
π

, (5.1)

which applies for the total momentum zero employed in our case. The momentum p of D

mesons is extracted from the measured energy levels Elatn = 2ED(p) using the dispersion

relation (3.1). The resulting momenta and phase shifts for all eigenstates except for the

spin 3 admixture and for the finite volume state related to J/ψ are collected in Table 3.

The large absolute value of p3 cot δ corresponds to feeble scattering, while small p3 cot δ is

related to significant scattering.

We fit our data in two ways:

(i) A resonance ψ(3770): The scattering matrix in the vicinity of a resonance has a

Breit-Wigner form

Tl(s) =

√
sΓ(s)

m2
R − s− i

√
s Γ(s)

=
1

cot δl(s)− i
. (5.2)

The width

Γ(s) =
g2

6π

p3

s
(5.3)

is parametrized in terms of the phase space for p-wave decay and the ψ(3770) → DD̄ cou-

pling g. It is expected that g depends only mildly onmu/d, and that the leading dependence

of Γ on mu/d is captured by phase space. Equations (5.2, 5.3) lead to p3 cot δ1(s)/
√
s =

(6π/g2)(m2
R − s) and then expressing s = 2(m2

D + p2)1/2 and mR = 2(m2
D + p2R)

1/2 to

p3 cot δ(s)√
s

=
6π

g2
4(p2R − p2) (5.4)
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Ensemble (1) Ensemble (2) exp

fit (i) fit (ii) fit (i) fit (ii) D+D−/D0D̄0

ψ(3770)

pR [GeV] 0.208(31)(3) 0.159(35)(2) 0.334(155)(5) 0.343(184)(5) 0.26/0.29

mR [GeV] 3.784(7)(10) 3.774(6)(10) 3.786(56)(10) 3.789(68)(10) 3.77315(33)

g (no unit) 13.2(1.2) 19.7(1.4) 24(19) 28(21) 18.7(1.4)

ψ(2S)

|pB | [GeV] 0.380(17)(6) 0.280(43)(4) 0.31/0.28

mB [GeV] 3.676(6)(9) 3.682(13)(9) 3.686109+12
−14

Table 5. Parameters of the resonance ψ(3770) and bound state ψ(2S) from fits (i) (5.4) and

(ii) (5.6). The ψ(3770) → DD̄ width Γ = g2p3/(6πs) is parametrized in terms of the coupling

g and compared the value of the coupling derived from experiment [15]. The pR denotes D-

meson momenta at the peak of the resonance and |pB| the binding momentum. The first errors

are statistical and the second errors (where present) are from the scale setting uncertainty. The

experimental data and errors are based on PDG values. Errors on experimental pR/B are suppressed

as they are very small.

where pR is the D meson momentum at the resonance peak. The values of g and pR follow

from the linear fit (5.4) through the energy levels n = 3, 5 in the vicinity of the resonance,

where the Breit-Wigner form applies (level 4 is omitted since it is attributed to ψ3 as

discussed above). The fit is shown in Fig. 4, while the resulting resonance parameters are

given in Table 5. The resonance mass mR corresponding to the pR on the lattice is given

by inserting the Fermilab dispersion relation (3.1) in (3.4)

mR/B = 2ED(pR/B)− m̄lat + m̄exp (5.5)

and will be used for resonances or bound states throughout this work.
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Figure 4. p3 cot δ/
√
s versus p2 for D̄D scattering in p-wave in the region of the ψ(2S) bound state

and the ψ(3770) resonance. The p denotes the momentum of D meson. We show the Breit-Wigner

fit (i) and the extended fit (ii), which aims to capture also the behavior around ψ(2S).
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(ii) A resonance ψ(3770) and a bound state ψ(2S): In addition to the Breit-Wigner

form (5.4), which is linear in p2, we make use also of the square form in p2

p3√
s
cot δ1(s) = A+Bp2 + Cp4 (5.6)

which in general has a longer range of applicability. It aims to capture also the D̄D

scattering in the vicinity of ψ(2S): there the (imaginary) phase shift in Table 3 nearly sat-

isfies the condition for the bound state cot δ ≃ i on the physical Riemann sheet pB =

i|pB |, leading to p3 cot δ ≃ |pB |3. The fit (5.6) through levels n = 2, 3, 5 in Fig. 4

assumes that the ψ(2S) state still affects the D̄D scattering. It renders (A,B,C) ≃
(0.0046(19) GeV2,−0.168(27),−0.52(13)/GeV2), (0.0069(88) GeV2,−0.023(80),−0.30(68)/GeV2)

on ensemble (1) and ensemble (2) respectively. The zero of p3 cot δ1/
√
s, and the derivative

at this zero, lead to the parameters of ψ(3770) resonance in Table 5. This model also leads

to a bound state ψ(2S) at pB = i|pB | where the scattering amplitude T (5.2) has a pole

and cot δ(pB) = i. The bound state mass mB in Table 5 is indeed close to experimentally

measured ψ(2S).

The results from both fit (i) and fit (ii) on ensemble (2) are compatible with the experi-

mental data3 within large statistical uncertainties (see Table 5). Note that the higher-lying

ψ(4040) resonance does not influence the results for this ensemble, since it lies significantly

higher than the relevant energy levels.

Confronting the results for ψ(3770) from fit (i) on ensemble (1) with experiment gives a

smaller resonance momentum pR than in experiment, which we attribute to the unphysical

threshold on ensemble (1) at mπ ≃ 266 MeV and the finite lattice spacing. The resonance

mass mR calculated as in Eq. 3.4 compares favorably. The coupling constant from fit (i)

is to small compared to experiment which which is likely related to to the closeness of the

ψ(4040) resonance neglected in the analysis. The assumption that the resonance ψ(4040)

does not affect the energy level related to D(1)D̄(−1) is probably not justified on ensemble

(1), where energy level lies higher (and closer to ψ(4040)) than on ensemble (2). Roughly

estimating the effect by comparing the one-resonance and two-resonance scenarios, estimat-

ing g and pR for ψ(3770) and ψ(4040) from available experimental data [49], the coupling

we observe is consistent with this interpretation 4. Given the possibly large influence from

the ψ(4040) we can not conclude that fit (ii) is better than fit (i) on this ensemble.

The resulting 1−− spectrum is summarized and compared to experiment in Fig. 5.

3Since we work in the isospin-symmetric limit we measure the sum of the neutral and charged decay

modes; therefore we compare to the experimental value g2exp = g2D0D̄0 +g
2
D+D− obtained from Γ[ψ(3770) →

D0D̄0] = g2D0D̄0p
3/(6πs) and Γ[ψ(3770) → D+D−] = g2D+D−p

3/(6πs) [15]. Notice also that averaging

the results from recent experiment resonance mass determinations for the ψ(3770) leads to a value of

mexp
R = 3778.1(1.2), much larger than the fit by the PDG (which relies on an experiment neglecting

interference with non-resonant background) and consistent with the most recent results in [16].
4The maximal effect of ψ(4040) is estimated by assuming that ψ(4040) width is saturated byDD̄ (instead

of DD̄, DD̄∗, D∗D̄∗ and other modes).

– 12 –



 fit (i)  fit (ii)

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

E
 [

G
eV

]

 fit (i)  fit (ii)

D(0)D
_

(0)

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

m
D

++m
D

-

2m
D

0

ensemble (1) ensemble (2) exp.

J/ψ

ψ(2S)

ψ(3770)

Figure 5. The comparison of the final 1−− spectrum to the experiment. The magenta diamond

denotes ψ(3770) resonance mass from the Breit-Wigner fit (i) or extended fit (ii), given in Eqs. (5.4)

and (5.6), respectively. The magenta triangle denotes ψ(2S) obtained as a pole in DD̄ channel.

The blue triangles denote masses of J/ψ and ψ(2S) extracted as energy levels in the finite box.

The statistical and scale setting errors have been summed in quadrature.

6 Results for the scalar channel

6.1 Discrete spectrum

The energy levels in the scalar channel are shown in Figs. 6. The only experimentally well

established state is χc0(1P ). The triangles represent the intriguing experimental candidates

for χc0(2P ), none of which is commonly accepted (see Section 2).

The spectrum from a lattice simulation consists both of energy levels that have large

overlap with q̄q operators as well as energy levels with dominant overlap to D̄D operators.

The latter appear near their non-interacting energies En.i.DD of Eq. (3.3), which are denoted

by dashed lines in Figs. 6a,d. On ensemble (1) levels n = 2, 4 appear near the non-

interacting D(0)D̄(0) and D(1)D̄(−1) (cf. Fig. 6a). Levels n = 2, 3, 4 on ensemble (2) have

dominant overlap to D̄D scattering operators and are close to non-interacting D(0)D̄(0),

D(1)D̄(−1) and D(2)D̄(−2) energies (cf. Fig. 6d).
Each energy level in addition to the number of expected D(q)D̄(−q) scattering levels

is related to the presence of a bound state or a resonance. There are two such states, that

cannot be attributed to D(q)D̄(−q) for both ensembles. The ground state is related to

χc0(1P ) and is close to its experimental mass. The second of these two levels appears above

threshold and corresponds to n = 3 for ensemble (1) and n = 5 for ensemble (2), as shown

in Figs. 6a and 6d. The avoided level crossing scenario suggests that an additional level

appears somewhere in the range E ≃ m± Γ, which suggests the existence of a resonance
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Figure 6. The energies E (see Eq. 3.4) in the scalar channel on both ensembles. The only

well established experimental state χc0(1P ) is shown by the (magenta) circle. Triangles show

three intriguing candidates for χc0(2P ), that are not universally accepted: X(3915) and the broad

resonances (2.1,2.2) suggested in [25, 26]. The dashed lines shown energies of non-interacting

D(q)D̄(−q) with q = 0, 1, 2 (3.3), while dot-dashed line represents mJ/ψ +mω. Interpolators used

in (a,d) are given in Table 6, (b) uses O
J/ψ ω
1,2 in addition, while (c,e) are based only on Oc̄c1,3,5.

roughly at

m ≃ 3.9− 4.0 GeV (naive estimate from En) . (6.1)

This is close to the first excitation obtained using just Oc̄c interpolators in Figs. 6c and 6e.

Such a basis gives a rough estimate of resonance masses but is not well suited to capture

two-particle states or resonances and bound states close to threshold [12–14].

The spectrum including J/ψ ω interpolating fields is shown in Fig. 6b for ensemble (1).

An energy level related to J/ψ(0)ω(0) appears at roughly mJ/ψ+mω while the energies of

all the other levels remain unaffected with respect to Fig. 6a. We have verified also that

the overlaps for the remaining levels are not affected if OJ/ψ ω are in the basis or not. This

indicates that the J/ψ ω channel is decoupled from D̄D channel to a good approximation.

6.2 D̄D scattering in s-wave

We now study D̄D scattering assuming that J/ψ ω channel is decoupled as argued in the

previous paragraph. The energy shifts of the extracted Elatn with respect to En.i.DD give the

size of the s-wave scattering phase shift δ according to (5.1). On ensemble (1) we observe

statistically significant energy shifts with respect to the dashed lines in Fig. 6a. The

energies yield D-meson momenta p via Elatn = 2ED(p), and the corresponding phase shifts
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n fit fit χ2

d.o.f.
Elata E [GeV] (ap)2 (ap) cot(δ) (ap) cot(δ)

√
s

δ[◦]

range type (3.4)

Ens. (1)

1 6-15 2ec 9.50/6 1.7468(19) 3.4226(27) −0.2226(49) −0.4716(52) −0.2700(31) −240.9(2.8)i

2 6-15 2ec 5.40/6 1.9494(33) 3.7453(52) −0.0099(32) 0.11(11) 0.058(55) 4(190) + 84(306)i

3 3-12 2ec 2.73/6 2.0625(81) 3.925(13) 0.1185(98) 0.39(17) 0.191(79) 41(11)

4 3-12 2ec 6.39/6 2.1190(31) 4.0154(49) 0.1857(48) −0.50(11) −0.236(52) 139.2(6.5)

Ens. (2)

1 4-15 2ec 7.84/8 1.3672(38) 3.4227(83) −0.1136(60) −0.3371(89) −0.2466(68) −344.9(8.8)i

2 4-15 2ec 3.74/8 1.5018(74) 3.715(16) −0.0038(61) −0.004(185) −0.003(123) −4(201)i

3 3-12 2ec 3.50/6 1.5497(71) 3.820(16) 0.0367(61) 1.2(7.5) 0.8(4.8) 8.7(29.2)

4 6-12 1ec 0.89/5 1.5934(92) 3.915(20) 0.0745(80) 1.7(10.8) 1.1(6.8) 9.1(28.3)

5 6-12 1ec 1.68/5 1.6148(85) 3.961(19) 0.0932(75) −0.21(21) −0.13(13) 124(28)

Table 6. Discrete lattice spectrum for the scalar channel. The p and δ correspond to D̄D scat-

tering in s-wave. Subset Oc̄c1,3,5, O
DD
1−3 from interpolators in Eq. (4.1) is used for ensemble (1) and

Oc̄c1,3,5, O
DD
1,3,4 for ensemble (2). t0 = 2 is used for all data points.
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Figure 7. We show p cot δ and p cot δ/
√
s versus p2 for D̄D scattering in s-wave, where p denotes

the momentum of the D meson. The circles with (sizable) errors denote the lattice data, while the

solid lines show p cot δ = 2Z00/(L
√
π) according to Lüscher’s relation (5.1). When the momentum

is compatible with the non-interacting momentum p = 2πq/L (q ∈ N3), one has δ = 0 and

| cot δ| =∞, which is responsible for the huge errors on p cot δ on ensemble (2).

δ(p) via Eq. (5.1). These are provided for all levels in Table 6 and plotted in Figs. 7 and

8.

The uncertainties on the energies En=2,3,4 are rather large for ensemble (2) and they are

within errors compatible with non-interacting energies En.i.DD (3.3). This implies that we are
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Figure 8. The p cot δ/
√
s versus p2 for D̄D scattering in s-wave, where p denotes the momentum

of the D meson. The lattice data (blue and red circles) is confronted with p cot δ/
√
s based on

various hypothesis (dashed lines) described in Section 6 of the main text. The thin dot-dashed lines

in the plots at the bottom denote p cot δ = 2Z00/(L
√
π) (5.1).

not able to reliably determine the energy shifts, and the resulting errors on the scattering

matrix will be large, as illustrated in Fig. 7. If Elatn ≃ En.i.DD within errors, this implies

δ ≃ 0 modulo π and cot δ ≃ ±∞ within errors. The extracted p cot δ from n = 2, 3, 4

have large errors, which allow almost all p cot δ expect for small |p cot δ|. For n = 2, 3, 4

we plot central values f(p2) with the ranges [f(p2 − σp2), f(p2 + σp2)] where f = p cot δ

or p cot δ/
√
s. The error for all other levels (on both ensembles and both channels) is the

usual jack-knife.
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The resulting p cot δ/
√
s for ensemble (1) has a puzzling behavior and we are going

to confront it with various hypothesis, collected in Fig. 8. The errors of p cot δ/
√
s on

ensemble (2) are large and do not allow reliable fits. We will still compare data from

ensemble (2) with fits that are based on ensemble (1), and plot them as function of p2 on

the same figure. Note that the slightly different positions of thresholds 2mD on the two

ensembles do not play a crucial role in the scalar channel, since the anticipated resonances

and bound states are not expected very close to the threshold (in contrast to ψ(3770) in

the vector channel).

(i) A narrow resonance: In the vicinity of a Breit-Wigner resonance (5.2) one expects

p cot δ(s)√
s

=
4

g2
(p2R − p2) , Γ(s) = g2

p

s
(6.2)

and the zero gives the position of the resonance. The upper three points in Fig. 8a however

do not fall onto one line, so our results cannot be reconciled with a single Breit-Wigner

resonance in the region between 2mD and 4 GeV. The highest two points support the

existence of a narrow resonance between them and a linear fit (6.2) over two levels shown

in Fig. 8(i,a) renders (5.5)

mR = 3.966(20) GeV, g = 1.26(18) GeV, (6.3)

platR = 0.614(33) GeV, Γlat = 62(17) MeV .

The scattering data from ensemble (1) therefore suggest the existence of a yet unobserved

scalar state called χ′
c0. Note that its mass is within the range of the naive estimate (6.1).

It has a width Γlat in our simulation, while the corresponding width g2p̃/m2
R in experiment

would be modified due to a different phase space via p̃ = [m2
R/4− (mexp

D )2]1/2, leading to

Γexppredict = 67(18) MeV . (6.4)

We have assumed that g and mR do not depend on the pion mass here. It is unlikely that

this state corresponds to X(3915) since the D̄D decay channel was not observed for this

state. A narrow resonance is roughly consistent also with the result from ensemble (2)

within huge errors (see Fig. 8(i,b)), however there must be some additional interaction

between D and D̄ near the threshold according to ensemble (1).

(ii) A narrow resonance and a bound state χc0(1P): Our next hypothesis assumes

that χc0(1P ) represents a pole in D̄D scattering on the first Riemann sheet, leading to

p cot δ ≃ i|pB |i = −|pB| at the position of the bound state. The negative value of p cot δ

below threshold might be a possible reason why p cot δ at threshold is smaller than ex-

pected based on narrow resonance (6.2,6.3). In this case the value of p cot δ at threshold is

influenced by the resonance and a bound state. To investigate this situation, we attempted

several fits over all four levels on ensemble (1). A form that is motivated by our data

p cot δ(s)√
s

= A+B p2 +
C

p2 −D (6.5)
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is presented in Fig. 8(ii,a), where A = 0.13(15), B = 0.66(18)/GeV2 , C = 0.028(63) GeV2

and D = 0.513(77) GeV2 are obtained from the fit. This hypothesis supports a bound

state at pB = i|pB | which corresponds to a pole in T (5.2) or equivalently cot δ(pB) = i,

i.e.

|pB| = 0.7517(83) GeV mB = 3.4224(27) GeV . (6.6)

The bound state is attributed to χc0(1P ) and its mass is very close to the one obtained

from the ground state energy. The hypothesis also supports a narrow resonance at pR =

0.668(35) GeV where function (6.5) crosses zero, and

mR = 4.002(24) GeV, g = 0.85(65) GeV, (6.7)

Γlat = 30(45) MeV ,Γexppredict = 32(48) MeV .

This is roughly consistent with the χ′
c0 in (6.3). This hypothesis based on ensemble (1)

is consistent also with the result from ensemble (2) within huge errors in Fig. 8(ii,b). An

interesting feature of this hypothesis is the large p cot δ or equivalently small cross-section

at p2 ≃ D, which corresponds to
√
s ≃ 4.0 GeV. This feature seems to be present also in

the experimental data from Belle [26] where a dip seems to appear at similar invariant mass.

(iii) A broad resonance: The broad resonances (2.1,2.2) proposed by Meissner&Guo [25]

or Olsen [26] are confronted with our lattice data in Fig. 8(iii). This shows a Breit-Wigner

shape (6.2) with pR and g extracted from the experimental data (2.1,2.2). Although they

are roughly compatible with our scattering results near threshold, they cannot be reconciled

with it in the region above threshold where our data indicates either a much narrower

resonance or a more complicated situation.

(iv) Two resonances: Since neither one narrow or one broad resonance describe our

scattering data near and above threshold, we next try an hypothesis with two elastic

resonances

p cot δ(s)√
s

=

[

g2A
4(p2RA − p2)

+
g2B

4(p2RB − p2)

]−1

. (6.8)

With this parametrisation there are two resonance poles in the scattering amplitude, sep-

arated by a zero. Figure 8(iv,a) shows an example with gA = 2.1 GeV, pRA = 0.23 GeV,

gB = 1.0 GeV and pRB = 0.57 GeV that is consistent with the upper three scatter-

ing points for ensemble (1)5. This hypothesis however predicts another energy level near

p2 ≃ 0.1 GeV2 where the model (6.8) crosses with the Lüscher curve. Another energy

level is expected in the two-resonance scenario also according to naive reasoning that each

resonance or bound state leads to a level in addition to D̄D. Such an additional energy

level at p2 ≃ 0.1 GeV2 is not observed in ensemble (1) indicating that this hypothesis

is not supported by our data. An analogous conclusion is reached when confronting this

hypothesis with the data from ensemble (2): the hypothesis predicts five energy levels in

the region p2 = [−0.1, 0.5] GeV and we observe four levels only.

5 These values are not obtained from a fit, but present one example of four parameters, where (6.8) is

consistent with upper three scattering points.
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7 Conclusions and outlook

We performed a lattice QCD simulation of D̄D scattering in s-wave and p-wave to study

vector and scalar charmonium resonances on two rather different ensembles. This is a first

simulation aimed at determining the strong decay width of charmonium resonances above

open charm threshold. Ensemble (1) has Nf =2 and mπ = 266 MeV, while ensemble (2)

has Nf =2 + 1 and mπ = 156 MeV. Several c̄c and DD̄ interpolating fields were used in

both channels, where the (stochastic) distillation method was used to evaluate the Wick

contractions.

In the vector channel, the well known ψ(3770) resonance is present just above D̄D

threshold. The phase shift for DD̄ scattering in p-wave was determined using the Lüscher

formalism. We performed a Breit-Wigner fit in vicinity of the ψ(3770) to obtain its reso-

nance mass at 3.784(7)(10) GeV and 3.786(56)(10) GeV for ensembles (1) and (2), respec-

tively. Our determination of its decay width might be affected by the Ψ(4040) on ensemble

(1). Ensemble (2) does not suffer from this issue, and the determination of the resonance

parameters is more reliable, but its statistical accuracy is poor. The resulting spectrum in

the vector channel, including also J/ψ and ψ(2S), is compared to experiment in Figure 5.

This work presents a first step towards a determination of the ψ(3770) resonance param-

eters from lattice QCD. Future lattice studies in multiple volumes (and or using multiple

momentum frames) with a larger ensemble size should provide precision results for this

resonance.

In the scalar channel, only the ground state χc0(1P ) is understood and there is no

commonly accepted candidate for its first excitation χc0(2P ). Guo & Meissner [25] as

well as Olsen [26] argued that the higher lying X(3915) can probably not be identified

with the χc0(2P ). They suggest that a broad structure observed in DD̄ invariant mass

represents χc0(2P ). This posed a particular motivation to extract the phase shift for DD̄

scattering in s-wave in the present work. The resulting scattering data on the ensemble

with mπ = 156 MeV is unfortunately noisy. The simulation at mπ = 266 MeV renders

the scattering phase shift only at a few values of the DD̄ invariant mass, which also does

not allow a clear answer to the puzzles in this channel. We obtain the χc0(1P ) and our

data provides an indication for a yet-unobserved narrow resonance slightly below 4 GeV

with Γ[χ′
c0 → DD̄] below 100 MeV. A scenario with this narrow resonance and a pole

in the DD̄ scattering matrix at χc0(1P ) agrees with the energy-dependence of our phase

shift. We checked the consistency of other three scenarios with our data: just one narrow

resonance, just one broad resonance proposed in Guo & Meissner [25] and Olsen [26], or

one narrow and one broad resonance. None of these three scenarios agree with our data in

the whole energy region we probed. For the scalar channel this leaves us with a situation

where puzzles remain, both from theory and experiment. To clarify the situation, further

experimental and lattice QCD efforts are required to map out the s-wave DD̄ scattering

in more detail.
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[44] M. Lüscher, Volume dependence of the energy spectrum in massive quantum field theories. I.

Stable particle states, Commun. Math. Phys. 104 (1986) 177.
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